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Abstract

I prove some important results about decompositions of the form f (x, y)=∑
i ui(x) ·vi(y), which are important for nomography.

In particular, I provide a recipe for taking any decomposition and reduc-

ing it to as few terms as possible. I show that no matter what decomposition

you start with, all fully reduced decompositions of f (x, y) have the same

number of terms in the sum. I show that in fact, each function has basically

only one fully reduced decomposition—the functions in any fully-reduced de-

composition can all be written as linear combinations of the functions in any

other fully-reduced decomposition. Finally, I present Warmus’s algorithm

for getting an initial decomposition1. The algorithm converts any function

f (x, y) into the form
∑

i ui(x) ·vi(y).

These results are important to nomographers because they eliminate

guesswork: In preparation for making a nomogram of a function F(x, y, z),

you often need to decompose it into the form
∑

i f i(x) · g i(y) ·hi(z), and that

form must have at most 6 terms. This document teaches you how to produce

an initial decomposition and then how to reduce that decomposition to as

few terms as possible. It then provides an ironclad verdict: If the result-

ing decomposition is short enough, you’re all set to make a nomogram. If

not, you can be sure that it’s impossible—no other approach, decomposition,

mathematical insight, or algebraic trickery will help.

1 Function decomposition

A decomposition of a two-variable function f (x, y) splits it into a sum of products

of one-variable functions:

f (x, y)=
n∑

i=1
ui(x)vi(y).

The number of terms in the sum is called the rank of the decomposition.

1Actually, this part is forthcoming in a later draft
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1.1 Commentary We’re starting with the two-variable case for simplicity. De-

compositions with three variables are useful in nomography where, in order to

draw a function F(u,v,w) as a nomogram, you need to decompose it into a sum

of one-variable products
∑

i f i(u)g i(v)hi(w).

1.2 Reducible decompositions Sometimes you can simplify a decomposi-

tion f (x, y) = ∑n
i=1 ui(x)vi(y), converting it into a new sum with fewer terms.

This happens just when there is linear dependence: when the ui are linearly

dependent and/or the vi are.

For example, if the ui are linearly dependent, this means by definition that

we can find coefficients c1, . . . , cn, at least one of which is nonzero, such that∑
i ciui(x) = 0(x). This implies that you can rewrite one of the u(x) in terms of

the others, eliminating it from the sum.

1.3 Recipe If the ui are linearly dependent2, you can solve for one of the uk in

terms of the others u1, . . . ,un. When you substitute that expression for uk into

the decomposition formula f (x, y) = ∑
i ui(x)vi(y), you’ll eliminate uk from the

formula. Grouping all the ui terms together, you’ll be able to simplify, getting a

decomposition with one fewer term.

As long as the decomposition has linear dependence, we can repeatedly shorten

the sum using this procedure. Otherwise, if the u1, . . . ,un are linearly indepen-

dent and the v1, . . . ,vn are linearly independent, the decomposition has been

reduced as much as possible. We call such a decomposition fully reduced or

irreducible.

Technical details The description above gives the flavor of the recipe. This

section shows exactly how the calculations work. The key takeaway is that the

simplification process is entirely rote and automatic. Like similar processes,

such as Gaussian elimination, a computer can perform them without guesswork

or human input. Feel free to skip or skim this section if you’d prefer.

Suppose ck is nonzero. Then we can choose to rewrite the expression
∑

i ciui(x)=
0 to solve for uk. We find uk(x) = ∑

i 6=k(−ci/ck)ui(x). We can substitute this ex-

pression for uk in the original decomposition, which will eliminate uk(x) from

the decomposition entirely, leaving us with one fewer term:

2If your functions are differentiable—which they often are in practice—you can check for linear
dependence by forming the n×n Wrońskian determinant. The determinant has u1, . . . ,un in the first
row, and each subsequent row is the derivative of the one above it. If the determinant is identically
zero, the functions are linearly dependent.
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f (x, y)=
n∑

i=1
ui(x)vi(y)

= uk(x)vk(y)+ ∑
i 6=k

ui(x)vi(y)

=
[∑

i
(−ci/ck)ui(x)

]
vk(y)+ ∑

i 6=k
ui(x)vi(y)

= ∑
i 6=k

ui(x) [vi(y)− (ci/ck)vk(y)]

= ∑
i 6=k

ui(x)v̂i(y), v̂i(y)≡ vi(y)− (ci/ck)vk(y)

1.4 Theorem All fully reduced decompositions have the same rank.

1.5 Commentary This is important: no matter which decomposition you be-

gin with, no matter which factors the decomposition includes or how you choose

to simplify it, when it is fully reduced it will have the same, minimal rank as

any other fully reduced decomposition.

This is important for nomography because it eliminates guesswork. Given

that you can only form a nomogram of a function F(x, y, z) if that function can

be decomposed into a sum of six terms, you often wonder if you could just alge-

braically manipulate it into a simpler form. You have too many terms and won-

der if there’s some algebraic insight you’re missing. Linear dependence provides

an algorithm for simplifying the expression as much as possible. This theorem

provides rock bottom: it says that once you’ve eliminated linear dependence, the

expression is as simplified as possible. No backtracking, no algebraic insight, no

other approach can simplify it further.

In fact, there’s an even stronger sense in which all irreducible decomposi-

tions of a function are related—they’re all interconvertible.

1.6 Theorem Any two irreducible decompositions
∑

i ui(x)vi(y)=∑
i pi(x)qi(y)

are related via a unique invertible linear transformation. Specifically, there ex-
ists an invertible A such that pi =Aui and qi = (A>)−1vi.

1.7 Commentary This is such an astonishing, nice result. It says, in other

words, that each function has essentially only one irreducible decomposition,

made of n pairs of independent functions: once you have one irreducible de-

composition f = ∑
i uivi, all other irreducible decompositions can be written as

linear combinations of the ui multiplied by linear combinations of the vi.

This, again, eliminates guesswork in the production of nomograms. It dis-

pells the feeling that you might’ve missed some crucial way of rewriting f in a

more convenient form.

The first dimension theorem actually follows from this one, but it’s so prac-

tically useful I made sure to state it on its own.
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Proofs

The main task in this section is to prove the two theorems. They’re not hard

proofs, but they rely on some matrix manipulations that can be hard to follow.

To streamline the presentation, let me present a lemma whose proof contains

most of the hard work.

1.8 Lemma Suppose f (x, y) can be decomposed two ways, with

f (x, y)=
M∑

i=1
ui(x)vi(y)=

N∑
j=1

p j(x)q j(y).

(These decompositions may have different rank—M and N, respectively—and

are possibly unreduced.)

If u1, . . . ,uM are linearly independent, then the v j(y) are a linear combina-

tion of the qi(y). In other words, there is an M×N matrix A such that

v(y)=A ·q(y).

1.9 Commentary I’ll postpone the proof for now. Using the result of this

lemma, we can straightforwardly prove our two theorems.

1.10 Proof of Theorem 1.4 All fully reduced decompositions have the same
rank.

Proof. Suppose f (x, y) has two fully reduced decompositions
∑M

i=1 ui(x)vi(y) =∑N
j=1 p j(x)q j(y) of rank M and N, respectively. We want to show that M = N.

Because
∑

i uivi is fully reduced, all our functions are linearly independent:

u1, . . . ,uM , v1, . . . ,vM , p1, . . . , pN , q1, . . . , qN .

Because u1, . . . ,um is linearly independent, we can apply the lemma to it.

Accordingly, we find a function A that relates the vi to the q j:

v(y)=A ·q(y).

Using the fact that v1, . . . ,vM and q1, . . . , qN are linearly independent, we

see that this function A maps N linearly independent vectors onto M linearly

independent vectors. According to linear algebra, this is only possible if N ≥ M.

Repeat this same argument, exchanging u ↔ v, p ↔ q, M ↔ N, and x ↔ y, to

conclude that also M ≥ N. Hence M = N.

1.11 Proof of Theorem 1.6 Any two irreducible decompositions
∑

i ui(x)vi(y)=∑
i pi(x)qi(y) are related via an invertible linear transformation. Specifically,

there exists an invertible A such that pi =Aui and qi = (A>)−1vi.

Proof. Suppose there are two fully reduced decompositions f (x, y) = ∑
i ui(x) ·

vi(y)=∑
i pi(x) · qi(y). Note that they both have the same rank n, by the preced-

ing theorem.
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Because
∑

i ui(x)vi(y) is fully reduced, both u1, . . . ,un and v1, . . . ,vn are lin-

early independent. Apply the lemma to the u1, . . . ,un to find a matrix A such

that

v(y)=A ·q(y).

Apply the lemma to the v1, . . . ,vn to find a matrix B such that

u(x)=B ·p(x).

Incidentally, note that we can express the decomposition of f (x, y) in vector

notation as f (x, y)=u>v=p>q.

From the definition of A and B, we also know that

f (x, y)=u>v

= (p> ·B>)(A ·q)

=p> · (B>A) ·q.

Equating the two expressions for f (x, y), we see that B>A must be the iden-

tity matrix, and so the square matrices B> and A are inverses of one another.

Rewriting B= (A>)−1, we have our desired result:

u(x)= (A>)−1 ·p(x)

v(y)=A ·q(y)

1.12 Observation The converse of the theorem is also true: because invertible

matrices send linearly independent sets to linearly independent sets, it follows

that if A is invertible and f (x, y) = ∑
i uivi is irreducible, then we can obtain

another irreducible decomposition by defining

[g1(x), . . . , gn(x)]=A−1[u1(x), . . . ,un(x)]

[h1(y), . . . ,hn(y)]=A[v1(y), . . . ,vn(y)].

Indeed, then

g>h=u>A−1 ·Av=u>v= f (x, y),

as required.

1.13 Application Here’s one sanity check: suppose you multiply each vi by a

certain amount αi 6= 0. To preserve the value of the function, you naturally want

to divide each of the ui by that same amount.

Note that this follows from the theorem: our scaling function amounts to

a diagonal matrix A = diag(α1, . . . ,αn) with αi along the diagonal and zeroes

elsewhere. Because it is a diagonal matrix, its inverse is A−1 = diag(α−1
1 , . . . ,α−1

n )

as expected.
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1.14 Commentary Our next job is to prove Lemma 1.8, which we used in

the above proofs. To prove it, let me introduce a valuable result about linearly-

independent functions3. It’ll help with the proof (and is just generally nice to

know, as well):

1.15 Lemma The functions f1(x), . . . , fn(x) are linearly independent if and only
if there exist points x1, . . . , xn such that the matrix

f1(x1) f2(x1) · · · fn(x1)

f1(x2) f2(x2) · · · fn(x2)
...

...
. . .

...
f1(xn) f2(xn) · · · fn(xn)


is invertible (i.e. such that the determinant is nonzero).

1.16 Proof of Lemma 1.8 Suppose f (x, y) can be decomposed two ways, with

f (x, y)=
M∑

i=1
ui(x)vi(y)=

N∑
j=1

p j(x)q j(y).

(These decompositions may have different rank—M and N, respectively—and are
possibly unreduced.) If u1, . . . ,uM are linearly independent, then the v j(y) are a
linear combination of the qi(y). In other words, there is an M×N matrix A such
that

v(y)=A ·q(y).

Proof. Suppose we have two decompositions, possibly unreduced and possibly of

different ranks M 6= N:

f (x, y)=
M∑

i=1
ui(x)vi(y)=

N∑
j=1

p j(x)q j(y).

Assume u1, . . . ,uM are linearly independent. Then, applying the previous

Lemma 1.15 to u1, . . . ,uM , we find points a1, . . . ,aM such that the following ma-

trix is invertible:

U=


u1(a1) u2(a1) . . . uM(a1)

...
...

. . .
...

u1(aM) u2(aM) . . . uM(aM)


Using those same points a1, . . . ,aM , define the matrix

P=


p1(a1) p2(a1) . . . pN (a1)

...
...

. . .
...

p1(aM) p2(aM) . . . pN (aM)

 .

3I’ll prove this lemma next.
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Note that P is an M×N matrix, not necessarily square like U. In particular,

because we’re using points a1, . . . ,aM chosen for u1, . . . ,uM , Lemma 1.15 doesn’t

apply so P is not necessarily invertible.

Finally, let us adopt shorthand notation v(y) for the vector of v1(y) . . .vM(y)

functions, q(y) for the vector of q1(y), . . . , qM(y) functions, and fa(y) for the vector

of f (a1, y), . . . , f (aM , y) functions.

We can write:

U ·v(y)= fa(y)=P ·q(y)

Because U is invertible, we can multiply on the left by U−1:

v(y)=U−1 ·P ·q(y)

This expression shows that each vi(y) is a linear combination of the q1(y), . . . , qN (y),

which was to be shown.

1.17 Proof of Lemma 1.15 The functions f1(x), . . . , fn(x) are linearly indepen-
dent if and only if there exist points x1, . . . , xn such that the matrix

f1(x1) f2(x1) · · · fn(x1)

f1(x2) f2(x2) · · · fn(x2)
...

...
. . .

...
f1(xn) f2(xn) · · · fn(xn)


is invertible (i.e., such that the determinant is nonzero).

Proof. (⇐). If the functions f1, . . . , fn are linearly dependent, then there’s a

nonzero linear combination of them that sums to zero:
∑

i ci f i(x) = 0(x). That

linear combination sums to zero everywhere, so it sums to zero at every partic-

ular point x = xi; hence no matter which points you choose, if you combine the

rows
[

f i(x1) f i(x2) . . . f i(xn)
]

of the matrix using that linear combination,

you’ll get all zeroes. This shows that the rows are linearly dependent for any

choice of x1, . . . , xn, and so the matrix is not invertible either.

(⇒). We proceed by induction. If we have only one linearly independent

function f1, it follows from the definition of linear independence that f1 is not

identically zero. Hence we can find some x1 at which f1(x1) 6= 0. But then the

1×1 matrix [ f1(x1)] is invertible because its determinant is nonzero. Hence the

statement is true for n = 1 linearly independent functions.

Next, let’s proceed by induction. Suppose we have linearly independent func-

tions f1, . . . , fn, g and that the theorem is true for f1, . . . , fn but fails when g is

included. We’ll find a contradiction.

If the statement is true for f1, . . . , fn, we can find x1, . . . , xn to make the matrix

[ f i(x j)] invertible, i.e. such that its determinant is nonzero.
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Define the function

D(x)≡ det





f1(x1) f2(x1) · · · fn(x1) g(x1)

f1(x2) f2(x2) · · · fn(x2) g(x2)
...

...
. . .

...
...

f1(xn) f2(xn) · · · fn(xn) g(xn)

f1(x) f2(x) · · · fn(x) g(x)




.

If the statement fails when g is included, then this determinant D(x) is zero

everywhere. There is no value of x which makes the matrix invertible.

We can rewrite D(x) by expanding the determinant along the bottom row4.

When we do, we get a linear combination of the functions f1(x), . . . , fn(x), g(x).

The coefficients on the functions are determinants of various submatrices. In

particular, the coefficient on the g term is the determinant det([ f i(x j)]). It is

nonzero because we picked the x1, . . . , xn so that it would be.

Hence we have two results: on the one hand, D(x) is zero everywhere. On

the other hand, it is equal to a nontrivial linear combination of f1, . . . , fn, g. This

contradicts our assumption that f1, . . . , fn, g are linearly independent. It follows

that D(x) can’t be zero everwhere, and in particular there’s some choice of x =
xn+1 which makes its matrix invertible.

2 Warmus decomposition algorithm

See Warmus’s publication Nomographic Functions (1959) for more details.

2.1 Recipe You can convert a function F(x, y) into a decomposition
∑

i g i(x) ·
hi(y) as follows.

In the base case, the function F(x, y) is identically zero, and we’re done—we

don’t need any terms in the sum.

Otherwise, we can find points (a,b) such that F(a,b) 6= 0. Accordingly, define

g1(x)≡ F(x,b)/F(a,b) and h1(y)≡ F(a, y).

The first term in the decomposition is therefore g1(x) ·h1(y) = F(x,b)
F(a,b) ·F(a, y).

To get the remaining terms, recursively apply this algorithm to the function

G(x, y)≡ F − g1h1

2.2 Example Try this with the function F(x, y)= cos(x+ y). Choose the values

for a and b carefully so that the expressions for g i(x) and hi(y) simplify as much

as possible. You’ll find that the function decomposes nicely into exactly two

terms—and a form that is perhaps familiar.

4For more details, see Laplace expansion.


